metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[bis(1*H*-imidazole)(μ_3 -7-oxabicyclo-[2.2.1]heptane-2,3-dicarboxylato)cadmium(II)]

Na Wang, Yan-Jun Wang and Qiu-Yue Lin*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China Correspondence e-mail: sky51@zjnu.cn

Received 31 May 2009; accepted 9 June 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.023 Å; R factor = 0.075; wR factor = 0.216; data-to-parameter ratio = 12.8.

The title compound, $[Cd(C_8H_8O_5)(C_3H_4N_2)_2]_n$, was synthesized by the reaction of 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride, cadmium acetate and imidazole. The Cd^{II} atom is seven-coordinated in a distorted pentagonal-bipyramidal configuration by five O atoms from carboxylate groups of three 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylate ligands and two N atoms from two imidazole ligands. The crystal structure is stabilized by N-H···O and C-H···O hydrogenbonding and C-H··· π interactions.

Related literature

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi *et al.* (1982). For cobalt complexes of norcantharidin, see: Wang *et al.* (1988) and of imidazole, see: Furenlid *et al.* (1986); Zhu *et al.* (2003).

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_8H_8O_5)(C_3H_4N_2)_2 \end{bmatrix} \\ M_r = 432.71 \\ Monoclinic, P2_1/c \\ a = 12.5374 (16) \text{ Å} \\ b = 9.6596 (13) \text{ Å} \\ c = 14.1635 (17) \text{ Å} \\ \beta = 112.761 (7)^{\circ} \end{bmatrix}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.900, T_{\rm max} = 0.932$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.216$ S = 1.052777 reflections 217 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O5^{i}$	0.86	2.09	2.830 (12)	144
$N4-H4B\cdotsO1^{n}$	0.86	2.44	3.012 (17)	125
$N4-H4B\cdots O2^{ii}$	0.86	2.05	2.818 (13)	149
$C6-H6A\cdots O4$	0.98	2.56	2.92 (2)	101
$C11 - H11A \cdots O5$	0.93	2.34	3.239 (15)	164
$C14 - H14A \cdots O2^{iii}$	0.93	2.55	3.358 (15)	145
$C12-H12A\cdots Cg5^{iv}$	0.93	2.76	3.565 (14)	145

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) -x + 1, -y, -z + 1. *Cg*5 is the centroid of the N3/N4/C9–C11 ring.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2804).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Furenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806–809.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789.
- Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.
- Zhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E59, m1089–m1090.

Mo $K\alpha$ radiation $\mu = 1.41 \text{ mm}^{-1}$ T = 296 K $0.12 \times 0.06 \times 0.05 \text{ mm}$

V = 1581.7 (3) Å³

Z = 4

10791 measured reflections 2777 independent reflections 2310 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

234 restraints H-atom parameters constrained $\Delta \rho_{max} = 2.92 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -1.26 \text{ e } \text{\AA}^{-3}$ supplementary materials

Acta Cryst. (2009). E65, m782 [doi:10.1107/S1600536809021801]

Poly[bis(1*H*-imidazole)(µ₃-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cadmium(II)]

N. Wang, Y.-J. Wang and Q.-Y. Lin

Comment

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi *et al.*, 1982). Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang *et al.*, 1988) and of imidazole (Furenlid *et al.*, 1986; Zhu *et al.*, 2003) have been reported.

In the title compound, (I), (Fig. 1), the cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration, defined by five oxygen atoms (O2, O3, O3A, O4B, O5B) from carboxylate groups of three 7oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydrides and two nitrogen atoms (N1, N3) from two imidazoles. Each 7oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride acts as a four-coordinared bridging linker that connects two cadmium centers.

The crystal structure is stabilized by N—H···O, C—H···O hydrogen bonding and C—H··· π interactions (Table 1).

Experimental

7-Oxabicyclo[2.2.1] heptane-2,3-dicarboxylic anhydride, cadmium acetate and imidazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. A crystal suitable for X-ray diffraction was obtained.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H 0.93 Å, aliphatic C—H = 0.97 (2) Å and N—H = 0.86 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Figures

Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Poly[bis(1*H*-imidazole)(µ₃-7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato)cadmium(II)]

Crystal data [Cd(C₈H₈O₅)(C₃H₄N₂)₂]

 $F_{000} = 864$

$M_r = 432.71$	$D_{\rm x} = 1.817 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3164 reflections
<i>a</i> = 12.5374 (16) Å	$\theta = 1.8 - 25.0^{\circ}$
b = 9.6596 (13) Å	$\mu = 1.41 \text{ mm}^{-1}$
c = 14.1635 (17) Å	<i>T</i> = 296 K
$\beta = 112.761 \ (7)^{\circ}$	Block, colourless
$V = 1581.7 (3) \text{ Å}^3$	$0.12\times0.06\times0.05~mm$
Z = 4	

Data collection

2777 independent reflections
2310 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.035$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -14 \rightarrow 13$
$k = -9 \rightarrow 11$
$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.075$	H-atom parameters constrained
$wR(F^2) = 0.216$	$w = 1/[\sigma^2(F_o^2) + (0.1141P)^2 + 20.9278P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2777 reflections	$\Delta \rho_{max} = 2.92 \text{ e } \text{\AA}^{-3}$
217 parameters	$\Delta \rho_{min} = -1.26 \text{ e } \text{\AA}^{-3}$
234 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, where *F* is the threshold expression of $F^2 > \sigma(F^2)$ and $F^2 = \sigma(F^2)$.

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.56124 (6)	0.12069 (7)	0.41461 (5)	0.0343 (3)
C1	0.3497 (10)	-0.0468 (14)	0.3258 (10)	0.054 (2)
C2	0.2845 (10)	-0.2300 (14)	0.1484 (11)	0.057 (2)
C3	0.2272 (12)	-0.0995 (16)	0.2847 (13)	0.072 (2)
H3A	0.2224	-0.1610	0.3380	0.086*
C4	0.1928 (11)	-0.1894 (18)	0.1877 (12)	0.073 (2)
H4A	0.1672	-0.2772	0.2066	0.088*
C5	0.1415 (13)	-0.0051 (18)	0.2677 (13)	0.083 (3)
H5A	0.1617	0.0762	0.3126	0.099*
C6	0.0917 (13)	-0.1236 (17)	0.1263 (14)	0.080 (3)
H6A	0.0743	-0.1363	0.0532	0.096*
C7	0.0267 (13)	-0.0946 (18)	0.2649 (14)	0.083 (3)
H7A	0.0478	-0.1647	0.3180	0.100*
H7B	-0.0321	-0.0346	0.2715	0.100*
C8	-0.0141 (13)	-0.1606 (19)	0.1553 (13)	0.081 (3)
H8A	-0.0851	-0.1187	0.1084	0.097*
H8B	-0.0246	-0.2599	0.1573	0.097*
C9	0.7916 (10)	-0.0684 (14)	0.4431 (9)	0.054 (3)
H9A	0.8443	-0.0022	0.4815	0.064*
C10	0.8193 (11)	-0.1875 (15)	0.4113 (10)	0.060 (3)
H10A	0.8935	-0.2187	0.4231	0.072*
C11	0.6339 (10)	-0.1723 (13)	0.3608 (9)	0.051 (2)
H11A	0.5560	-0.1953	0.3299	0.061*
C12	0.3507 (10)	0.3209 (13)	0.4170 (9)	0.050 (2)
H12A	0.3139	0.2518	0.4388	0.060*
C13	0.3119 (11)	0.4481 (13)	0.3898 (10)	0.055 (3)
H13A	0.2432	0.4845	0.3897	0.066*
C14	0.4742 (10)	0.4295 (13)	0.3745 (9)	0.050 (2)
H14A	0.5396	0.4509	0.3616	0.060*
N1	0.4556 (8)	0.3092 (9)	0.4073 (6)	0.0389 (19)
N2	0.3900 (9)	0.5160 (10)	0.3620 (8)	0.055 (3)
H2A	0.3849	0.5999	0.3404	0.066*
N3	0.6737 (7)	-0.0577 (9)	0.4109 (6)	0.0385 (19)
N4	0.7219 (10)	-0.2529 (10)	0.3601 (8)	0.058 (3)
H4B	0.7153	-0.3326	0.3313	0.070*
01	0.1232 (10)	0.0205 (13)	0.1600 (10)	0.102 (3)
02	0.3853 (6)	0.0273 (8)	0.2739 (6)	0.0493 (16)
03	0.4150 (8)	-0.0683 (11)	0.4176 (6)	0.064 (2)
O4	0.2664 (7)	-0.2321 (9)	0.0572 (7)	0.0558 (18)
05	0.3769 (6)	-0.2772 (8)	0.2164 (5)	0.0425 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0361 (5)	0.0323 (5)	0.0371 (5)	0.0007 (3)	0.0170 (3)	0.0026 (3)
C1	0.042 (4)	0.063 (4)	0.067 (4)	-0.001 (3)	0.032 (3)	-0.023 (4)
C2	0.039 (4)	0.064 (5)	0.076 (5)	-0.007 (4)	0.032 (4)	-0.028 (4)
C3	0.049 (4)	0.082 (5)	0.089 (5)	-0.006 (4)	0.031 (4)	-0.034 (4)
C4	0.048 (4)	0.083 (5)	0.091 (5)	-0.003 (4)	0.029 (4)	-0.035 (4)
C5	0.059 (4)	0.087 (5)	0.095 (5)	-0.004 (4)	0.023 (4)	-0.029 (4)
C6	0.054 (4)	0.085 (5)	0.094 (5)	-0.004 (4)	0.021 (4)	-0.030 (4)
C7	0.055 (5)	0.097 (5)	0.097 (5)	-0.004 (4)	0.029 (4)	-0.030 (5)
C8	0.055 (4)	0.091 (5)	0.096 (5)	-0.003 (4)	0.028 (4)	-0.032 (5)
C9	0.041 (5)	0.056 (6)	0.060 (5)	0.011 (5)	0.014 (4)	0.002 (5)
C10	0.047 (5)	0.064 (6)	0.067 (6)	0.016 (5)	0.018 (5)	0.001 (5)
C11	0.043 (4)	0.052 (5)	0.057 (5)	0.006 (4)	0.020 (4)	-0.001 (4)
C12	0.044 (5)	0.053 (5)	0.064 (5)	0.003 (4)	0.033 (4)	0.000 (4)
C13	0.051 (5)	0.052 (5)	0.068 (6)	0.007 (5)	0.029 (5)	0.003 (5)
C14	0.050 (5)	0.050 (5)	0.057 (5)	-0.002 (5)	0.029 (4)	0.001 (5)
N1	0.049 (5)	0.030 (4)	0.041 (4)	-0.001 (4)	0.021 (4)	-0.003 (4)
N2	0.071 (7)	0.032 (5)	0.065 (6)	0.014 (5)	0.031 (5)	0.013 (4)
N3	0.037 (5)	0.037 (5)	0.041 (5)	0.003 (4)	0.015 (4)	0.001 (4)
N4	0.087 (8)	0.038 (5)	0.054 (6)	0.017 (5)	0.031 (5)	-0.007 (4)
01	0.081 (5)	0.090 (6)	0.109 (6)	0.012 (5)	0.006 (5)	0.000 (5)
02	0.046 (3)	0.050 (4)	0.060 (4)	0.001 (3)	0.029 (3)	0.006 (3)
03	0.066 (5)	0.086 (5)	0.046 (4)	0.018 (4)	0.028 (3)	0.004 (4)
04	0.050 (4)	0.055 (4)	0.060 (4)	0.011 (3)	0.019 (3)	-0.002 (3)
05	0.045 (3)	0.042 (4)	0.046 (3)	0.003 (3)	0.024 (3)	-0.005 (3)

Geometric parameters (Å, °)

Cd1—N1	2.230 (9)	С7—Н7А	0.9700
Cd1—N3	2.240 (9)	С7—Н7В	0.9700
Cd1—O3 ⁱ	2.333 (8)	C8—H8A	0.9700
Cd1—O5 ⁱⁱ	2.476 (7)	C8—H8B	0.9700
Cd1—O4 ⁱⁱ	2.487 (8)	C9—C10	1.329 (18)
Cd1—O2	2.500 (8)	C9—N3	1.372 (14)
Cd1—O3	2.599 (10)	С9—Н9А	0.9300
C1—O2	1.226 (15)	C10—N4	1.316 (17)
C1—O3	1.258 (15)	C10—H10A	0.9300
C1—C3	1.506 (17)	C11—N3	1.305 (15)
C2—O4	1.222 (15)	C11—N4	1.354 (15)
C2—O5	1.271 (15)	C11—H11A	0.9300
C2—C4	1.510 (17)	C12—C13	1.323 (18)
C3—C5	1.36 (2)	C12—N1	1.379 (14)
C3—C4	1.540 (19)	C12—H12A	0.9300
С3—НЗА	0.9800	C13—N2	1.357 (16)
C4—C6	1.38 (2)	C13—H13A	0.9300

C4—H4A	0.9800	C14—N1	1.306 (15)
C5—O1	1.47 (2)	C14—N2	1.304 (15)
С5—С7	1.67 (2)	C14—H14A	0.9300
С5—Н5А	0.9800	N2—H2A	0.8600
C6—O1	1.476 (18)	N4—H4B	0.8600
C6—C8	1.57 (2)	O3—Cd1 ⁱ	2.333 (8)
С6—Н6А	0.9800	O4—Cd1 ⁱⁱⁱ	2.487 (8)
С7—С8	1.57 (2)	O5—Cd1 ⁱⁱⁱ	2.476 (7)
N1—Cd1—N3	174.2 (3)	С8—С6—Н6А	112.5
N1—Cd1—O3 ⁱ	93.7 (3)	C8—C7—C5	100.5 (13)
N3—Cd1—O3 ⁱ	91.4 (3)	С8—С7—Н7А	111.7
N1—Cd1—O5 ⁱⁱ	89.6 (3)	С5—С7—Н7А	111.7
N3—Cd1—O5 ⁱⁱ	84.6 (3)	С8—С7—Н7В	111.7
O3 ⁱ —Cd1—O5 ⁱⁱ	153.7 (3)	С5—С7—Н7В	111.7
N1—Cd1—O4 ⁱⁱ	90.2 (3)	Н7А—С7—Н7В	109.4
N3—Cd1—O4 ⁱⁱ	85.8 (3)	C7—C8—C6	100.4 (12)
O3 ⁱ —Cd1—O4 ⁱⁱ	101.5 (3)	С7—С8—Н8А	111.7
O5 ⁱⁱ —Cd1—O4 ⁱⁱ	52.3 (3)	С6—С8—Н8А	111.7
N1—Cd1—O2	86.1 (3)	С7—С8—Н8В	111.7
N3—Cd1—O2	94.2 (3)	С6—С8—Н8В	111.7
O3 ⁱ —Cd1—O2	117.3 (3)	Н8А—С8—Н8В	109.5
O5 ⁱⁱ —Cd1—O2	89.0 (2)	C10—C9—N3	110.0 (12)
O4 ⁱⁱ —Cd1—O2	141.1 (3)	С10—С9—Н9А	125.0
N1—Cd1—O3	99.5 (3)	N3—C9—H9A	125.0
N3—Cd1—O3	85.1 (3)	N4—C10—C9	107.1 (11)
O3 ⁱ —Cd1—O3	69.1 (4)	N4—C10—H10A	126.5
O5 ⁱⁱ —Cd1—O3	136.0 (3)	C9—C10—H10A	126.5
O4 ⁱⁱ —Cd1—O3	166.8 (3)	N3—C11—N4	110.6 (11)
O2—Cd1—O3	49.4 (3)	N3—C11—H11A	124.7
O2—C1—O3	118.3 (11)	N4—C11—H11A	124.7
O2—C1—C3	121.3 (13)	C13—C12—N1	107.8 (11)
O3—C1—C3	120.1 (13)	C13—C12—H12A	126.1
O4—C2—O5	122.5 (10)	N1—C12—H12A	126.1
O4—C2—C4	122.5 (13)	C12—C13—N2	107.9 (11)
O5—C2—C4	114.5 (12)	С12—С13—Н13А	126.1
C5—C3—C1	117.4 (13)	N2—C13—H13A	126.1
C5—C3—C4	106.9 (13)	N1-C14-N2	111.8 (10)
C1—C3—C4	115.3 (11)	N1-C14-H14A	124.1
С5—С3—НЗА	105.4	N2—C14—H14A	124.1
С1—С3—НЗА	105.4	C14—N1—C12	105.7 (10)
С4—С3—НЗА	105.4	C14—N1—Cd1	124.0 (7)
C6—C4—C2	122.0 (16)	C12—N1—Cd1	129.4 (8)
C6—C4—C3	100.0 (12)	C14—N2—C13	106.8 (10)
C2—C4—C3	119.0 (11)	C14—N2—H2A	126.6
C6—C4—H4A	104.6	C13—N2—H2A	126.6

supplementary materials

C2—C4—H4A	104.6	C11—N3—C9	104.6 (10)
C3—C4—H4A	104.6	C11—N3—Cd1	123.6 (7)
C3—C5—O1	95.3 (13)	C9—N3—Cd1	131.1 (8)
C3—C5—C7	105.8 (14)	C10—N4—C11	107.7 (10)
O1—C5—C7	106.0 (12)	C10—N4—H4B	126.1
С3—С5—Н5А	115.8	C11—N4—H4B	126.1
O1—C5—H5A	115.8	C6—O1—C5	95.3 (13)
С7—С5—Н5А	115.8	C1—O2—Cd1	98.4 (7)
C4—C6—O1	99.4 (12)	C1—O3—Cd1 ⁱ	149.9 (8)
C4—C6—C8	113.0 (16)	C1—O3—Cd1	92.7 (8)
O1—C6—C8	106.1 (13)	Cd1 ⁱ —O3—Cd1	110.9 (4)
С4—С6—Н6А	112.5	C2—O4—Cd1 ⁱⁱⁱ	92.6 (7)
O1—C6—H6A	112.5	C2—O5—Cd1 ⁱⁱⁱ	91.9 (6)
O2—C1—C3—C5	-67.4 (19)	C10—C9—N3—Cd1	-170.3 (9)
O3—C1—C3—C5	106.4 (18)	N1—Cd1—N3—C11	-105 (3)
O2—C1—C3—C4	60.1 (19)	O3 ⁱ —Cd1—N3—C11	105.9 (9)
O3—C1—C3—C4	-126.2 (15)	O5 ⁱⁱ —Cd1—N3—C11	-100.2 (9)
O4—C2—C4—C6	-15 (2)	O4 ⁱⁱ —Cd1—N3—C11	-152.6 (9)
O5—C2—C4—C6	173.5 (13)	O2—Cd1—N3—C11	-11.6 (9)
O4—C2—C4—C3	-140.1 (15)	O3—Cd1—N3—C11	37.0 (9)
O5—C2—C4—C3	48 (2)	N1—Cd1—N3—C9	64 (3)
C5—C3—C4—C6	3.3 (19)	O3 ⁱ —Cd1—N3—C9	-84.9 (10)
C1—C3—C4—C6	-129.2 (15)	O5 ⁱⁱ —Cd1—N3—C9	69.0 (10)
C5—C3—C4—C2	138.9 (16)	O4 ⁱⁱ —Cd1—N3—C9	16.6 (10)
C1—C3—C4—C2	6(2)	O2—Cd1—N3—C9	157.6 (10)
C1—C3—C5—O1	91.7 (15)	O3—Cd1—N3—C9	-153.8 (10)
C4—C3—C5—O1	-39.6 (16)	C9—C10—N4—C11	0.0 (15)
C1—C3—C5—C7	-160.0 (14)	N3—C11—N4—C10	0.2 (14)
C4—C3—C5—C7	68.7 (17)	C4—C6—O1—C5	-60.7 (15)
C2—C4—C6—O1	-99.0 (17)	C8—C6—O1—C5	56.7 (14)
C3—C4—C6—O1	34.8 (16)	C3—C5—O1—C6	60.4 (13)
C2—C4—C6—C8	149.0 (14)	C7—C5—O1—C6	-47.8 (13)
C3—C4—C6—C8	-77.2 (16)	O3—C1—O2—Cd1	-11.1 (12)
C3—C5—C7—C8	-76.9 (17)	C3—C1—O2—Cd1	162.8 (10)
O1—C5—C7—C8	23.5 (16)	N1-Cd1-O2-C1	-99.8 (7)
C5—C7—C8—C6	10.1 (16)	N3—Cd1—O2—C1	86.1 (7)
C4—C6—C8—C7	65.5 (17)	O3 ⁱ —Cd1—O2—C1	-7.6 (8)
O1—C6—C8—C7	-42.4 (17)	O5 ⁱⁱ —Cd1—O2—C1	170.6 (7)
N3—C9—C10—N4	-0.3 (15)	O4 ⁱⁱ —Cd1—O2—C1	174.6 (7)
N1—C12—C13—N2	0.7 (14)	O3—Cd1—O2—C1	6.2 (7)
N2-C14-N1-C12	-0.4 (13)	O2—C1—O3—Cd1 ⁱ	153.0 (13)
N2-C14-N1-Cd1	169.4 (8)	C3—C1—O3—Cd1 ⁱ	-21 (2)
C13—C12—N1—C14	-0.2 (13)	O2—C1—O3—Cd1	10.5 (11)
C13—C12—N1—Cd1	-169.3 (8)	C3—C1—O3—Cd1	-163.4 (10)
N3—Cd1—N1—C14	-18 (3)	N1—Cd1—O3—C1	70.6 (7)

O3 ⁱ —Cd1—N1—C14	131.6 (9)	N3—Cd1—O3—C1	-105.8 (7)
O5 ⁱⁱ —Cd1—N1—C14	-22.2 (9)	O3 ⁱ —Cd1—O3—C1	160.9 (9)
O4 ⁱⁱ —Cd1—N1—C14	30.1 (9)	O5 ⁱⁱ —Cd1—O3—C1	-28.7 (8)
O2-Cd1-N1-C14	-111.2 (9)	O4 ⁱⁱ —Cd1—O3—C1	-152.6 (11)
O3—Cd1—N1—C14	-158.9 (9)	O2—Cd1—O3—C1	-6.0 (6)
N3—Cd1—N1—C12	150 (3)	N1—Cd1—O3—Cd1 ⁱ	-90.3 (4)
O3 ⁱ —Cd1—N1—C12	-61.1 (10)	N3—Cd1—O3—Cd1 ⁱ	93.3 (4)
O5 ⁱⁱ —Cd1—N1—C12	145.1 (9)	O3 ⁱ —Cd1—O3—Cd1 ⁱ	0.0
O4 ⁱⁱ —Cd1—N1—C12	-162.7 (9)	O5 ⁱⁱ —Cd1—O3—Cd1 ⁱ	170.4 (3)
O2—Cd1—N1—C12	56.1 (9)	O4 ⁱⁱ —Cd1—O3—Cd1 ⁱ	46.5 (14)
O3—Cd1—N1—C12	8.4 (10)	O2—Cd1—O3—Cd1 ⁱ	-166.9 (5)
N1-C14-N2-C13	0.8 (14)	O5—C2—O4—Cd1 ⁱⁱⁱ	9.0 (13)
C12-C13-N2-C14	-0.9 (14)	C4—C2—O4—Cd1 ⁱⁱⁱ	-162.4 (13)
N4—C11—N3—C9	-0.4 (13)	O4—C2—O5—Cd1 ⁱⁱⁱ	-9.0 (13)
N4-C11-N3-Cd1	171.2 (7)	C4—C2—O5—Cd1 ⁱⁱⁱ	163.0 (11)
C10-C9-N3-C11	0.4 (14)		

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2A···O5 ^{iv}	0.86	2.09	2.830 (12)	144
N4—H4B…O1 ⁱⁱⁱ	0.86	2.44	3.012 (17)	125
N4—H4B····O2 ⁱⁱⁱ	0.86	2.05	2.818 (13)	149
С6—Н6А…О4	0.98	2.56	2.92 (2)	101
C11—H11A…O5	0.93	2.34	3.239 (15)	164
C14—H14A···O2 ⁱⁱ	0.93	2.55	3.358 (15)	145
C12—H12A···Cg5 ⁱ	0.93	2.76	3.565 (14)	145
	1/2 (1) 11 1/		. 1	

Symmetry codes: (iv) x, y+1, z; (iii) -x+1, y-1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2; (i) -x+1, -y, -z+1.

Fig. 1

